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Abstract 

This study introduces a nonparametric approach to pricing credit default swaps (CDSs). This 
method is notable for its simplicity, estimation speed, and flexibility. That is, it relies exclusively on 
closed-form solutions (which provide instantaneous results) and allows the user to reproduce any term 
structure of CDS spreads. I empirically assess its pricing performance by comparing it with an otherwise 
equivalent semiparametric (piecewise constant default probability) model that requires a series of root-
search algorithms and represents the current market convention for marking-to-market CDS contracts. 
This analysis demonstrates that the new method also implies a reduction in mean percentage absolute 
pricing errors. 
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1. Introduction 

The term structure of credit default swap (CDS) spreads represents valuable information for 

pricing credit-risky securities: mainly (and unsurprisingly) the actual positions in CDS contracts. 

Pricing models based on the term structure of CDS spreads can be classified as either parametric or 

semiparametric. Several studies apply parametric models (e.g., Chen et al. 2013; Jarrow et al. 2019; Pan 

and Singleton 2008), and they generally work as follows. First, the researcher assumes a stochastic 

(parametric) process for the risk-neutral default intensity and a distribution function for CDS spread 

pricing errors. Second, based on these assumptions, the model parameters are estimated using the 

maximum likelihood method or a similar optimization rule. Finally, the estimated model can be used to 

price existing CDS contracts and other credit-risky securities (e.g., risky bonds). An appealing 

characteristic of parametric models is that all prices rely on a few parameter values, which in turn can 

be modeled as a function of fundamental economic variables. For the same reason, the main limitation 

of these models is that pricing errors can be minimized, but never completely eliminated. That is, using 

these models for pricing necessarily assumes some degree of market mispricing in the observed CDS 

spreads, model mispricing, or a combination of the two.1   

Semiparametric models are the conventional approach to marking-to-market CDS contracts. While 

different variations exist (Duffie 1999; Hull and White 2003; O’Kane and Turnbull 2003), these models 

share several core assumptions. The risk-free interest rate process and default time are risk-neutrally 

independent, and (forward risk-neutral) default probabilities have a piecewise constant profile. Based 

on these assumptions, the term structure of default probabilities can be estimated sequentially from the 

earliest to latest maturity of available CDS spreads such that the model perfectly refits these observed 

quotes. Because a constant default probability model represents the clearest example of a parametric 

 
 

1 This discussion refers to so-called reduced-form models (Jarrow and Turnbull 1995). Structural credit risk 
models (Merton 1974) constitute a different family of parametric models. Du et al. (2019) offer a good example 
of the technical challenges associated with replicating the observed term structure of CDS spreads based on a 
structural credit risk model. 
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model, a piecewise constant default probability (PWCDP) model can be effectively described as 

semiparametric. However, this alternative approach also has costs. Operationally, this means solving a 

sequence of root-search algorithms equal to the number of observed (or otherwise specified) quotes. 

This process is time-consuming and does not guarantee convergence in all cases. In terms of accuracy, 

it is sensible to require a CDS pricing model to replicate the observed CDS spreads. However, a model’s 

ability to price CDS contracts with different, mostly untraded, maturities is directly related to its 

precision in assessing the spreads that the market would eventually agree upon for those maturities. 

Therefore, we may question the accuracy of the semiparametric approach in estimating unobserved 

CDS spreads, whether there is room for improvement, and at what cost (if any). 

Figure 1 illustrates an example. Figure 1A presents the hypothetical complete term structure of 

CDS spreads (CTSCDS; the black solid line, left axis). Generated using a particular parameterization 

of the Svensson model (𝛽𝛽0 = 140; 𝛽𝛽1 = −133; 𝛽𝛽2 = −325; 𝛽𝛽3 = 275; 𝛼𝛼1 = 2.2; 𝛼𝛼2 = 3.1), this 

comprises all possible maturities over a 30-year horizon, from one to 10,950 calendar dates. However, 

the CTSCDS is not observed in practice. As the figure indicates, the observed term structure of CDS 

spreads (OTSCDS; red points, left axis) is typically reduced to 6m, 1y, 2y, 3y, 4y, 5y, 7y, 10y, 15y, 

20y, and 30y.2 Figure 1A incorporates the predicted CTSCDS according to the PWCDP model 

discussed later (blue dashed line, left axis) and corresponding percentage absolute pricing errors 

(PAPEs; black dotted line, right axis). The PWCDP model offers a perfect fit for the observed CDS 

spreads, although noticeable pricing errors may exist for the remainder of the curve. The example 

differentiates between lower (blue area) and higher (green area) maturities than the most liquid 5y term. 

This differentiation is relevant. According to Bank for International Settlements data (second half of 

2022), single-name CDS contracts with a remaining maturity equal to or less than five years represent 

92.70% of the total notional amount outstanding. 

 
 

2 I chose the parameter values in the Svensson model to closely fit the observed quotes for a representative 
company. Please refer to the median CDS spreads in Table 2. 
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Figure 1B presents the same true CTSCDS as in Figure 1A; however, I use the OTSCDS in this 

case to perform a straight interpolation between the observed quotes, specifically through the Shape-

Preserving Piecewise Cubic Hermite Interpolation (PCHIP; i.e., the Matlab® code for this interpolation 

scheme). As the figure clarifies, the PCHIP method offers a more accurate representation of the true 

CTSCDS than the PWCDP model. The improvement applies also (and especially) for the most common 

contract maturities. As this example shows, even a relatively simple interpolation scheme may provide 

a better fit for the CTSCDS than the PWCDP model. By extension, the example also suggests that 

instead of assuming a piecewise constant default probability ex-ante and estimating the CTSCDS ex-

post, the problem of model mispricing can be minimized by first fitting the most plausible CTSCDS 

based on the observed quotes and having a pricing model capable of reproducing the entire curve. 

Certainly, these competing strategies entail a potential tradeoff. If pricing errors from the 

semiparametric approach are economically insignificant (i.e., below the observed bid-ask spreads), a 

marginal gain in accuracy may be insufficient to justify a more complex or computationally demanding 

model. However, if a more accurate model is noticeably simpler and faster to implement, then the 

proposed model clearly outperforms the traditional semiparametric approach. 

<Figure 1 about here> 

This study contributes to the literature on credit risk pricing in general and that on the pricing of 

CDS contracts in particular by deriving an extremely simple, nonparametric pricing model that allows 

the user to refit any pre-specified CTSCDS. The model draws on three core elements. First, the price of 

a CDS contract can always be expressed as a simple function of a reduced number of well-established 

building blocks in credit risk pricing or credit risk discount factors (CRDFs), initially defined by Lando 

(1998). Second, I can show that in a discrete-time economy in which all future asset maturities and 

possible defaulting times are the same (i.e., all future calendar dates, consistent with the proposed 

interpolation), a set of no-arbitrage conditions must hold between the values of these CRDFs for any 

two consecutive maturities. Finally, based on these results, a system of equations exists that allows the 

immediate bootstrapping of such CRDFs for all possible maturities. Specifically, the bootstrapping 
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procedure is based exclusively on closed-form solutions. Thus, unlike the semiparametric approach, it 

does not involve a sequence of root-search algorithms. Overall, the nonparametric model that I 

introduce in this study is more flexible, simpler, and faster than the conventional semiparametric 

approach and, therefore, more efficient. 

To address pricing errors, I analyze a sample of 104 companies with highly liquid CDS spreads 

over 2010–2019 to compare the performance of four pricing approaches: the benchmark PWCDP model 

and three versions of the nonparametric model introduced here in which the CTSCDS is estimated ex-

ante using a linear, PCHIP, or cubic spline interpolation (termed the NP/Linear, NP/PCHIP, and 

NP/Spline models hereafter). Based on this empirical analysis, I conclude that the nonparametric model 

with a PCHIP interpolation provides the lowest mean PAPE (MPAPE), while the PWCDP model 

generates the highest MPAPE. While a comparison with typical bid-ask spreads suggests that this gain 

in accuracy is not economically significant, it is an additional benefit of the new method. Further, it 

concentrates precisely on the maturities segment that, in practice, is most relevant for pricing (i.e., those 

equal to or less than the standard 5-year term). 

The remainder of this paper proceeds as follows. Section 2 defines the basic setting and introduces 

the no-arbitrage conditions for the CRDFs. Section 3 reviews CDS contract pricing based on the 

CRDFs. Section 4 incorporates the additional assumptions and describes the bootstrapping process. 

Section 5 presents a conventional PWCDP model as a restricted case. Section 6 discusses the possible 

applications of the term structure of the CRDFs, primarily marking-to-market CDS contracts. Section 

7 presents an empirical analysis that ranks the accuracy of the four pricing approaches. Finally, Section 

8 summarizes the main conclusions. 

2. Basic Setting and No-Arbitrage Conditions for the Credit Risk Discount Factors 

2.1. Setting 

I focus on the pricing of CDS contracts and other single-name credit-risky securities at the current 

(non-defaulting) time 0. The assumption is that of a simple discrete-time economy with daily time 

intervals. Traded assets include (but are not restricted to) default-free and risky zero-coupon bonds of 
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all possible maturities.3 I denote the maturities as 𝑇𝑇, which correspond to all future calendar dates up 

to time 𝜏𝜏; that is, 𝑇𝑇 ∈ {∆, 2∆, … , 𝜏𝜏}, with ∆= 1/365. The price of a default-free zero-coupon bond with 

a nominal value of $1 and maturity 𝑇𝑇 is 𝑍𝑍(𝑇𝑇).4 For risky bonds, default may occur at any future calendar 

date and represents an absorbing state. The default time is denoted 𝜏𝜏𝑑𝑑, while the minimum between 𝜏𝜏𝑑𝑑 

and 𝑇𝑇 is denoted 𝐿𝐿𝑑𝑑𝑇𝑇 . In the case of default, bond holders receive (irrespective of the possible coupon) a 

fraction 𝜃𝜃 of its face value and the asset is liquidated.5 The markets are complete and arbitrage-free. 

2.2. Credit Risk Discount Factors and No-Arbitrage Conditions 

In this setting, the three basic CRDFs are defined as follows: 

• 𝐴𝐴(𝑇𝑇): The present value of asset class 𝐴𝐴 paying a constant annuity of $∆ every ∆ years until 𝐿𝐿𝑑𝑑𝑇𝑇  

(included). 

• 𝐵𝐵(𝑇𝑇): The present value of asset class 𝐵𝐵 paying $1 at 𝜏𝜏𝑑𝑑, provided 𝜏𝜏𝑑𝑑 ≤ 𝑇𝑇. 

• 𝐶𝐶(𝑇𝑇): The present value of asset class 𝐶𝐶 paying $1 at 𝑇𝑇, provided 𝜏𝜏𝑑𝑑 > 𝑇𝑇. 

I stress here that, for asset class 𝐴𝐴 with maturity 𝑇𝑇, default at 𝜏𝜏𝑑𝑑 ≤ 𝑇𝑇 implies the cancelation of the 

periodic stream of payments from 𝜏𝜏𝑑𝑑 + ∆ onward. This includes 𝜏𝜏𝑑𝑑 + ∆, but not 𝜏𝜏𝑑𝑑 itself. Although 

this clarification is meaningless in a continuous-time model (Lando 1998), it is a key element in this 

case. In addition, my discrete-time setting enables the introduction of a fourth convenient CRDF:  

• 𝐸𝐸(𝑇𝑇): The present value of asset class 𝐸𝐸 paying $1 at 𝑇𝑇, provided 𝜏𝜏𝑑𝑑 > 𝑇𝑇 − ∆. 

Hence, the difference between assets 𝐶𝐶 and 𝐸𝐸 with the same maturity 𝑇𝑇 is that the payment of $1 

at 𝑇𝑇 is conditional on survival at time 𝑇𝑇 for the former asset and on survival at the previous date 𝑇𝑇 − ∆ 

for the latter. 

 
 

3 The latter assumption is made for convenience and can be easily relaxed. In particular, as in Jarrow and Turnbull 
(1995), the only real requirement is that sufficient traded assets exist to allow the prices of default-free and risky 
zero-coupon bonds to recover for all possible maturities. 
4 As all prices are determined at time 0, I use simple notation to avoid re-emphasizing time 0. Additionally, 𝑍𝑍(𝑇𝑇) ≡
𝑒𝑒−𝑟𝑟(𝑇𝑇)𝑇𝑇, where 𝑟𝑟(𝑇𝑇) is the spot rate with maturity 𝑇𝑇. 
5 The recovery of face value assumption is standard in CDS pricing models and consistent with actual practice. 
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Figure 2 depicts the payment structures of the four contingent claims. Along with the assumptions 

in Section 2.1, these payment structures imply two no-arbitrage conditions that must hold for any two 

consecutive maturities, 𝑇𝑇 − ∆ and 𝑇𝑇. 

<Figure 2 about here> 

The first no-arbitrage condition (NAC1) relates 𝐴𝐴(𝑇𝑇), 𝐴𝐴(𝑇𝑇 − ∆), and 𝐸𝐸(𝑇𝑇): 

𝐴𝐴(𝑇𝑇) = 𝐴𝐴(𝑇𝑇 − ∆) + ∆𝐸𝐸(𝑇𝑇), (1) 

with 𝐴𝐴(0) = 0. 

In Equation (1), the present value of a daily annuity of $∆ paid until time 𝑇𝑇 or default must be 

equal to the sum of (a) the present value of the daily annuity of $∆ paid until time 𝑇𝑇 − ∆ or default and 

(b) the present value of $∆ paid with certainty at time 𝑇𝑇, conditional on no default at time 𝑇𝑇 − ∆ or 

before. The second component follows from the previous comment on the effect of default on asset 𝐴𝐴 

payments. 

The second no-arbitrage condition (NAC2), which must hold for any two consecutive maturities 

𝑇𝑇 − ∆ and 𝑇𝑇, is 

𝐶𝐶(𝑇𝑇) + 𝐵𝐵(𝑇𝑇) − 𝐵𝐵(𝑇𝑇 − ∆) = 𝐸𝐸(𝑇𝑇), (2) 

with 𝐵𝐵(0) = 0. 

On the left-hand side of Equation (2), 𝐶𝐶(𝑇𝑇) is the present value of $1 paid at time 𝑇𝑇, conditional 

on no default at that time or before. In addition, 𝐵𝐵(𝑇𝑇) − 𝐵𝐵(𝑇𝑇 − ∆) equals the present value of $1 paid 

at time 𝑇𝑇 in the case of default at that moment and not before. Taken as a whole, the left-hand side of 

Equation (2) equals the present value of $1 paid with certainty at time 𝑇𝑇, conditional on no default at 

time 𝑇𝑇 − ∆ or before, exactly what 𝐸𝐸(𝑇𝑇) on the right-hand side of the said equation represents. 

Combining Equations (1) and (2) yields the following related condition: 

𝐴𝐴(𝑇𝑇) = 𝐴𝐴(𝑇𝑇 − ∆) + ∆[𝐶𝐶(𝑇𝑇) + 𝐵𝐵(𝑇𝑇) − 𝐵𝐵(𝑇𝑇 − ∆)]. (3) 

Equation (3) provides the necessary relationship between the three core CRDFs for any two 

consecutive maturities 𝑇𝑇 − ∆ and 𝑇𝑇. Importantly, this equilibrium condition relies exclusively on the 
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payment structures of assets 𝐴𝐴, 𝐵𝐵, and 𝐶𝐶 and the assumptions in Section 2.1. That is, it does not depend 

on a risk-neutral pricing model. A further intuitive implication of Equation (3) is 

𝐴𝐴(𝑇𝑇) = ∆ �� 𝐶𝐶(ℎ∆)
𝑇𝑇/∆

ℎ=1
+ 𝐵𝐵(𝑇𝑇)�. (4) 

3. Credit Default Swap Spreads as a Function of Credit Risk Discount Factors 

The value of a position in a CDS contract with maturity 𝑇𝑇 is the difference between its premium 

and protection legs. Figure 3 illustrates the daily structure of the premium leg and reflects a key feature 

of a CDS contract. While the annual premium per dollar of protected debt, 𝑐𝑐𝑐𝑐𝑐𝑐, is generally paid in 

quarterly installments, the liquidation of the contract in the case of default implies the payment of the 

premium accrued since the last quarterly payment. Hence, a non-defaulting state on a given day implies 

a consolidated right to accrue ∆𝑐𝑐𝑐𝑐𝑐𝑐 the following day, regardless of whether default occurs on that day. 

If we further assume no counterparty risk from the protection buyer’s side, then the consolidated right 

to accrue ∆𝑐𝑐𝑐𝑐𝑐𝑐 can be considered to be risk-free income on a given day, conditional on no default on 

the previous day. Because this payment structure mimics that of asset 𝐴𝐴, scaled by 𝑐𝑐𝑐𝑐𝑐𝑐, the present 

value of the premium leg is simply 

𝑋𝑋(𝑇𝑇) = 𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴(𝑇𝑇), (5) 

where the nominal value of the protected bond is normalized to 1. 

<Figure 3 about here> 

Figure 4 depicts the daily structure of the protection leg. On any given day, the protection payment 

is 0 in the case of no default and a fraction (1 − 𝜃𝜃) of the protected bond’s face value in the case of 

default. Thus, the payment structure of the protection leg reproduces that of asset 𝐵𝐵 scaled by (1 − 𝜃𝜃), 

and the same applies for its present value for a nominal of 1: 

𝑌𝑌(𝑇𝑇) = (1 − 𝜃𝜃)𝐵𝐵(𝑇𝑇). (6) 

<Figure 4 about here> 

Finally, we obtain the break-even CDS spread, 𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇), by equating the premium and protection 

legs of the contract (see also Duffie 1999): 
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𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇) =
(1 − 𝜃𝜃)𝐵𝐵(𝑇𝑇)

𝐴𝐴(𝑇𝑇) . (7) 

4. Additional Assumptions and Bootstrapping the Credit Risk Discount Factors 

All the previous results are based on no-arbitrage arguments alone, implying that they do not rely 

on risk-neutral pricing models. However, a convenient additional assumption is that the risk-free 

interest rate process and default time are risk-neutrally independent (Jarrow and Turnbull 1995; Jarrow 

et al. 1997; Duffie 1999; Hull and White 2003; O’Kane and Turnbull 2003). If we denote 𝑆𝑆(𝑇𝑇) as the 

risk-neutral survival probability at time 𝑇𝑇 (as seen at current time 0), this new assumption allows us to 

decompose 𝐶𝐶(𝑇𝑇 − ∆) and 𝐸𝐸(𝑇𝑇) as follows: 𝐶𝐶(𝑇𝑇 − ∆) = 𝑍𝑍(𝑇𝑇 − ∆)𝑆𝑆(𝑇𝑇 − ∆); and 𝐸𝐸(𝑇𝑇) = 𝑍𝑍(𝑇𝑇)𝑆𝑆(𝑇𝑇 −

∆). If we further denote 𝑓𝑓(𝑇𝑇 − ∆,𝑇𝑇) ≡ −(1 ∆⁄ )𝑙𝑙𝑙𝑙𝑙𝑙[𝑍𝑍(𝑇𝑇) 𝑍𝑍(𝑇𝑇 − ∆)⁄ ] as the forward (risk-free) rate 

between 𝑇𝑇 − ∆ and 𝑇𝑇, we have 

𝐸𝐸(𝑇𝑇) = 𝑒𝑒−𝑓𝑓(𝑇𝑇−∆,𝑇𝑇)∆𝐶𝐶(𝑇𝑇 − ∆), (8) 

with 𝐶𝐶(0) = 𝑍𝑍(0) = 1. The interpretation of this equation is straightforward. Under the assumption of 

risk-neutral independence between the risk-free interest rate process and default time, we can obtain 

𝐸𝐸(𝑇𝑇) by discounting first from 𝑇𝑇 to 𝑇𝑇 − ∆ at the forward rate and then from 𝑇𝑇 − ∆ to 0 using the 

discount factor 𝐶𝐶(𝑇𝑇 − ∆). 

Let us now assume that 𝐴𝐴(𝑇𝑇 − ∆), 𝐵𝐵(𝑇𝑇 − ∆), and 𝐶𝐶(𝑇𝑇 − ∆) are available for a given maturity 𝑇𝑇 −

∆. In this case, and assuming that the forward rate 𝑓𝑓(𝑇𝑇 − ∆,𝑇𝑇) is also available, Equations (1), (2), (7), 

and (8) lead to a system of three equations and three unknowns—𝐴𝐴(𝑇𝑇), 𝐵𝐵(𝑇𝑇), and 𝐶𝐶(𝑇𝑇)—with a simple 

closed-form solution: 

𝐴𝐴(𝑇𝑇) = 𝐴𝐴(𝑇𝑇 − ∆) + ∆𝑒𝑒−𝑓𝑓(𝑇𝑇−∆,𝑇𝑇)∆𝐶𝐶(𝑇𝑇 − ∆); (9a) 

𝐵𝐵(𝑇𝑇) =
𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇)𝐴𝐴(𝑇𝑇)

(1 − 𝜃𝜃) ; (9b) 

𝐶𝐶(𝑇𝑇) = 𝑒𝑒−𝑓𝑓(𝑇𝑇−∆,𝑇𝑇)∆𝐶𝐶(𝑇𝑇 − ∆) − 𝐵𝐵(𝑇𝑇) + 𝐵𝐵(𝑇𝑇 − ∆). (9c) 

Several aspects of this finding require special attention. First, because Equation System (9) links 

{𝐴𝐴(𝑇𝑇),𝐵𝐵(𝑇𝑇),𝐶𝐶(𝑇𝑇)} to {𝐴𝐴(𝑇𝑇 − ∆),𝐵𝐵(𝑇𝑇 − ∆),𝐶𝐶(𝑇𝑇 − ∆)}, we can bootstrap the full term structure of 
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CRDFs based on a previously settled CTSCDS and the initial values {𝐴𝐴(0),𝐵𝐵(0),𝐶𝐶(0)} = {0,0,1}. 

Second, because the solution is also in closed form (trivial and unique), this estimation does not require 

a series of root-search algorithms or any other optimization rule. That is, we can obtain the full term 

structure of CRDFs instantaneously using a spreadsheet. Third, these term structures converge naturally 

toward their risk-free counterparts as the CTSCDS tends to a flat zero curve: 𝐵𝐵(𝑇𝑇) tends to zero, 𝐶𝐶(𝑇𝑇) 

tends to 𝑍𝑍(𝑇𝑇), and 𝐴𝐴(𝑇𝑇) tends to ∆∑ 𝑍𝑍(ℎ∆)𝑇𝑇/∆
ℎ=1 .6 Fourth, the solution contains no specific assumptions 

about the risk-free interest rate process or default time. Their unique assumption is that they are risk-

neutrally independent. Finally, the solution does not even involve estimating the risk-neutral survival 

(or forward default) probabilities. As I demonstrate in the next section, they can be easily obtained as a 

sub-product of the bootstrapping process. However, these additional results are not required for any 

application considered below. 

Table 1 provides a numerical example in which I estimate the CTSCDS from the same OTSCDS 

as in Figure 1 but using a simple linear interpolation.7 The table shows the CDS spreads for the observed 

maturities and interpolated values. For the interval (0,6m], I could presume either a flat term structure 

or the same slope as that in the interval [6m,1y]. For this and the other cases of linear interpolation, I 

adopt the latter option.8 I also assume a constant risk-free rate of 2% and recovery rate of 40%. Table 

1 summarizes the final estimates of the CRDFs for the selected maturities and Figure 5 shows the results 

for all possible maturities. Notably, although different interpolation schemes (i.e., linear, PCHIP, and 

cubic spline) can be considered in the first step, the posterior bootstrapping process is always the same. 

<Table 1 about here> 

<Figure 5 about here> 

 

 
 

6 The last expression indicates that 𝐴𝐴(𝑇𝑇) tends to the present value of a risk-free daily annuity of $∆ paid until 
time 𝑇𝑇. This result is a direct implication of Equation (4) and the remarks on 𝐵𝐵(𝑇𝑇) and 𝐶𝐶(𝑇𝑇). 
7 See www.santiagoforte.com for the Excel file containing this example. 
8 Please refer to Section 7.1 for a further discussion of the estimation criterion for the short end of the curve. 



11 
 
 

 

5. A Restricted Case: The Piecewise Constant Default Probability Model 

This section describes the PWCDP model as a restricted version of the nonparametric model 

introduced above. First, I show that Equation System (9) produces the same results as does a model 

based on the CTSCDS that estimates the risk-neutral default probability at any time 𝑇𝑇, conditional on 

no previous default. If we denote 𝑞𝑞(𝑇𝑇) as an element of this term structure of forward risk-neutral 

default probabilities, then the risk-neutral survival probability at time 𝑇𝑇 is 

𝑆𝑆(𝑇𝑇) = �[1 − 𝑞𝑞(𝑢𝑢∆)]
𝑇𝑇/∆

𝑢𝑢=0

, (10) 

whereas the risk-neutral default probability at time 𝑇𝑇 (and not before) is 

𝐻𝐻(𝑇𝑇) = 𝑞𝑞(𝑇𝑇) � [1 − 𝑞𝑞(𝑢𝑢∆)]
(𝑇𝑇−∆)/∆

𝑢𝑢=0

. (11) 

Note that 𝑞𝑞(0) = 0. From Equations (10) and (11), and assuming that the risk-free interest process 

and default time are risk-neutrally independent, we obtain the following expressions for 𝐴𝐴(𝑇𝑇), 𝐵𝐵(𝑇𝑇), 

𝐶𝐶(𝑇𝑇), and 𝐸𝐸(𝑇𝑇): 

𝐴𝐴(𝑇𝑇) = ∆�{𝑍𝑍(ℎ∆)𝑆𝑆[(ℎ − 1)∆]}
𝑇𝑇/∆

ℎ=1

= ∆� �𝑍𝑍(ℎ∆)�[1 − 𝑞𝑞(𝑢𝑢∆)]
ℎ−1

𝑢𝑢=0

�
𝑇𝑇/∆

ℎ=1

; (12) 

𝐵𝐵(𝑇𝑇) = �{𝑍𝑍(ℎ∆)𝐻𝐻(ℎ∆)}
𝑇𝑇/∆

ℎ=1

= ��𝑍𝑍(ℎ∆)𝑞𝑞(ℎ∆)�[1 − 𝑞𝑞(𝑢𝑢∆)]
ℎ−1

𝑢𝑢=0

�
𝑇𝑇/∆

ℎ=1

; (13) 

𝐶𝐶(𝑇𝑇) = 𝑍𝑍(𝑇𝑇)𝑆𝑆(𝑇𝑇) = 𝑍𝑍(𝑇𝑇)�[1 − 𝑞𝑞(𝑢𝑢∆)]
𝑇𝑇/∆

𝑢𝑢=0

; (14) 

𝐸𝐸(𝑇𝑇) = 𝑍𝑍(𝑇𝑇)𝑆𝑆(𝑇𝑇 − ∆) = 𝑍𝑍(𝑇𝑇) � [1 − 𝑞𝑞(𝑢𝑢∆)]
(𝑇𝑇−∆)/∆

𝑢𝑢=0

. (15) 

It is a relatively simple task (addressed in the Appendix) to show that Equations (12)–(15) satisfy 

both NAC1 and NAC2. Additionally, based on Equations (7), (12), and (13), 
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𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇) =
(1 − 𝜃𝜃)∑ �𝑍𝑍(ℎ∆)𝑞𝑞(ℎ∆)∏ [1 − 𝑞𝑞(𝑢𝑢∆)]ℎ−1

𝑢𝑢=0 �𝑇𝑇/∆
ℎ=1

∆∑ �𝑍𝑍(ℎ∆)∏ [1 − 𝑞𝑞(𝑢𝑢∆)]ℎ−1
𝑢𝑢=0 �𝑇𝑇/∆

ℎ=1

. (16) 

Equation (16) provides the break-even CDS spread for a contract with maturity 𝑇𝑇 as a function of 

all forward risk-neutral default probabilities from 0 to 𝑇𝑇. From this equation, we can isolate 𝑞𝑞(𝑇𝑇) as a 

function of all previous probabilities: 

𝑞𝑞(𝑇𝑇) =
𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇)∆∑ �𝑍𝑍(ℎ∆)∏ [1 − 𝑞𝑞(𝑢𝑢∆)]ℎ−1

𝑢𝑢=0 � − (1 − 𝜃𝜃)∑ �𝑍𝑍(ℎ∆)𝑞𝑞(ℎ∆)∏ [1 − 𝑞𝑞(𝑢𝑢∆)]ℎ−1
𝑢𝑢=0 �(𝑇𝑇−∆)/∆

ℎ=1
𝑇𝑇/∆
ℎ=1

(1 − 𝜃𝜃)𝑍𝑍(𝑇𝑇)∏ [1 − 𝑞𝑞(𝑢𝑢∆)](𝑇𝑇−∆)/∆
𝑢𝑢=0

. (17) 

 Hence, it is possible to bootstrap a full term structure of the 𝑞𝑞(𝑇𝑇) values from the CTSCDS 

using Equation (17). This term structure can be used to determine the core CRDFs from Equations (12)–

(14) and price different single-name credit-risky securities, as described in Section 6. However, this 

task is both arduous and unnecessary because Equation System (9) more easily produces the same result. 

Furthermore, even if the intention is to estimate the term structure of the 𝑞𝑞(𝑇𝑇) and/or 𝑆𝑆(𝑇𝑇) values, it 

proves easier and faster to simply introduce two additional equations into Equation System (9): 

𝑆𝑆(𝑇𝑇) =
𝐶𝐶(𝑇𝑇)
𝑍𝑍(𝑇𝑇) ; (18) 

𝑞𝑞(𝑇𝑇) = 1 −
𝑆𝑆(𝑇𝑇)

𝑆𝑆(𝑇𝑇 − ∆) . (19) 

Note that 𝑆𝑆(0) = 1. 

Next, consider the implementation of a conventional PWCDP model. In our particular setting, this 

entails the following. First, it is assumed that 𝑞𝑞(𝑇𝑇) is piecewise constant in effect, where changes 

coincide with the maturity of the observable CDS spreads. Second, the term structure of the 𝑞𝑞(𝑇𝑇) values 

is estimated sequentially such that Equation (16) fits the observed CDS spreads perfectly. A 

bootstrapping process of this sort implies a sequence of root-search algorithms (one for each observed 

quote). Finally, the term structure of the core CRDFs and prices of different single-name credit-risky 
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securities are determined based on the term structure of the 𝑞𝑞(𝑇𝑇) values obtained, as previously 

described.9 

 Comparing the two pricing approaches, the PWCDP model starts by imposing a piecewise 

constant profile on the term structure of 𝑞𝑞(𝑇𝑇), which ultimately leads to an effective interpolation of 

the observed CDS spreads (see Figure 1A). By contrast, the starting point of the nonparametric model 

is a particular interpolation scheme for these observed quotes, which finally implies a full term structure 

of the 𝑞𝑞(𝑇𝑇) values. Figure 6 shows a numerical example in which I estimate the term structures of 𝑞𝑞(𝑇𝑇) 

and 𝑆𝑆(𝑇𝑇) by assuming the same OTSCDS as in Figure 1 and the four pricing models: PWCDP, 

NP/Linear, NP/PCHIP, and NP/Spline. The PWCDP and NP/Linear models entail the most 

discontinuous term structures of the 𝑞𝑞(𝑇𝑇) values, whereas the NP/Spline model generates the smoothest 

term structure. Nevertheless, given the small marginal effect of 𝑞𝑞(𝑇𝑇) on 𝑆𝑆(𝑇𝑇), the term structure of 

𝑆𝑆(𝑇𝑇) exhibits no evident jumps for any model. 

The ability to generate a smooth term structure of forward risk-neutral default probabilities is a 

desirable property of credit risk pricing models. However, this could be considered to be of secondary 

importance if the main goals are simplicity and pricing accuracy. In this regard, I should emphasize that 

the nonparametric model is less restrictive, easier, and faster to implement than the PWCDP model. 

Moreover, as the empirical analysis in Section 7 demonstrates, it leads to a lower MPAPE. However, 

Section 6 first reviews the most evident applications of the term structure of CRDFs provided by these 

models. 

<Figure 6 about here> 

 

 
 

9 The limit case in which 𝑞𝑞(𝑇𝑇) is a constant parameter equal to 𝑞𝑞 can also be analyzed. In this instance, and based 
again on Equation (16), the CDS spread is also constant and given by 𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇) = (1 − 𝜃𝜃)𝑞𝑞/∆. This result is nothing 
but the discrete-time version of the so-called credit risk triangle between the CDS spread, recovery rate, and 
constant hazard rate in a continuous-time model (e.g., O’Kane 2008). As is evident, this naïve version of a fully 
parametric model will only be consistent with a flat OTSCDS. 
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6. Applications 

6.1. Pricing Credit Default Swap Contracts 

The clearest application of the term structure of CRDFs is marking-to-market any position in a 

CDS contract. For a long position with a previously settled spread 𝑐𝑐𝑐𝑐𝑐𝑐, this value is simply 

𝑉𝑉(𝑇𝑇) = (1 − 𝜃𝜃)𝐵𝐵(𝑇𝑇) − 𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴(𝑇𝑇) = [𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇) − 𝑐𝑐𝑐𝑐𝑐𝑐]𝐴𝐴(𝑇𝑇). (20) 

This also implies a simple approach to estimate CDS returns (Berndt and Obreja 2010; Augustin 

et al. 2020; Lee et al. 2021). 

6.2. Pricing Risky Bonds 

Consider a risky bond with coupon 𝑏𝑏, nominal 𝑝𝑝, and maturity 𝑇𝑇. I denote 𝑇𝑇𝑚𝑚 as the maturity of 

the 𝑚𝑚th coupon payment, where 𝑚𝑚 = 1, … ,𝑀𝑀, and 𝑇𝑇𝑀𝑀 = 𝑇𝑇. The present value of this bond is 

𝑐𝑐(𝑇𝑇) = 𝑏𝑏 � 𝐶𝐶(𝑇𝑇𝑚𝑚)
𝑀𝑀

𝑚𝑚=1

+ 𝑝𝑝𝐶𝐶(𝑇𝑇) + 𝜃𝜃𝑝𝑝𝐵𝐵(𝑇𝑇). (21) 

The first term on the right-hand side of the equation reflects the present value of the stream of 

coupon payments. The second term accounts for the payment of the nominal amount at maturity in the 

case of no default. Finally, the last term incorporates the present value of the fractional recovery of the 

nominal value in the case of default. 

6.3. Pricing Forward Credit Default Swap Contracts 

Now, consider a forward CDS contract signed at current time 0 for credit protection between 

𝑇𝑇𝑗𝑗 and 𝑇𝑇𝑘𝑘, with 0 ≤ 𝑇𝑇𝑗𝑗 < 𝑇𝑇𝑘𝑘. More precisely, the initiation date is 𝑇𝑇𝑗𝑗, conditional on 𝜏𝜏𝑑𝑑 > 𝑇𝑇𝑗𝑗, so the first 

effective date with the accrual of premium payments and delivery of the bond in exchange for the bond’s 

face value in the case of default is 𝑇𝑇𝑗𝑗 + ∆. The daily structure of this contract is, in fact, the structure 

described in Figures 3 and 4 for a spot contract. The sole difference is that the starting date is now 𝑇𝑇𝑗𝑗 

rather than 0, and the ending date is 𝑇𝑇𝑘𝑘. To derive the present value of the premium leg of the forward 

contract based on the CRDFs, I define (for any 𝑇𝑇∗ and 𝑇𝑇, with 0 ≤ 𝑇𝑇∗ < 𝑇𝑇): 

• 𝐴𝐴(𝑇𝑇∗,𝑇𝑇): The present value of the same asset class 𝐴𝐴 paying a constant annuity of $∆ every ∆ years, 

but this time between 𝑇𝑇∗ and 𝑇𝑇 with the following conditions: (i) the first payment is at 𝑇𝑇∗ + ∆, 
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conditional on 𝜏𝜏𝑑𝑑 > 𝑇𝑇∗ (otherwise, the asset is liquidated at 𝜏𝜏𝑑𝑑), and; (ii) provided that 𝜏𝜏𝑑𝑑 > 𝑇𝑇∗, the 

last payment is at 𝐿𝐿𝑑𝑑𝑇𝑇  (included).  

Based on the definition of 𝐴𝐴(𝑇𝑇) and 𝐴𝐴(𝑇𝑇∗,𝑇𝑇), it holds that 

𝐴𝐴(𝑇𝑇∗,𝑇𝑇) = 𝐴𝐴(𝑇𝑇) − 𝐴𝐴(𝑇𝑇∗). (22) 

If we use 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐 to denote the spread of the forward CDS contract described above, the present value of 

the premium leg is: 

𝑋𝑋�𝑇𝑇𝑗𝑗 ,𝑇𝑇𝑘𝑘� = 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴�𝑇𝑇𝑗𝑗 ,𝑇𝑇𝑘𝑘�. (23) 

We can also derive the present value of the protection leg based on the CRDFs. I define: 

• 𝐵𝐵(𝑇𝑇∗,𝑇𝑇): The present value of the same asset class 𝐵𝐵 paying $1 at 𝜏𝜏𝑑𝑑, provided this time that 𝑇𝑇∗ <

𝜏𝜏𝑑𝑑 ≤ 𝑇𝑇. 

From the definition of 𝐵𝐵(𝑇𝑇) and 𝐵𝐵(𝑇𝑇∗,𝑇𝑇), it must hold that 

𝐵𝐵(𝑇𝑇∗,𝑇𝑇) = 𝐵𝐵(𝑇𝑇) − 𝐵𝐵(𝑇𝑇∗), (24) 

and the present value of the protection leg is: 

𝑌𝑌�𝑇𝑇𝑗𝑗 ,𝑇𝑇𝑘𝑘� = (1 − 𝜃𝜃)𝐵𝐵�𝑇𝑇𝑗𝑗 ,𝑇𝑇𝑘𝑘�. (25) 

The value of a long position in the forward CDS contract is thus: 

𝐹𝐹𝑉𝑉�𝑇𝑇𝑗𝑗 ,𝑇𝑇𝑘𝑘� = (1 − 𝜃𝜃)𝐵𝐵�𝑇𝑇𝑗𝑗 ,𝑇𝑇𝑘𝑘� − 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴�𝑇𝑇𝑗𝑗 ,𝑇𝑇𝑘𝑘�. (26) 

By imposing 𝐹𝐹𝑉𝑉�𝑇𝑇𝑗𝑗 ,𝑇𝑇𝑘𝑘� = 0, we finally obtain the break-even forward CDS spread:  

𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐�𝑇𝑇𝑗𝑗 ,𝑇𝑇𝑘𝑘� =
(1 − 𝜃𝜃)𝐵𝐵�𝑇𝑇𝑗𝑗 ,𝑇𝑇𝑘𝑘�

𝐴𝐴�𝑇𝑇𝑗𝑗 ,𝑇𝑇𝑘𝑘�
. (27) 

It is worth noting that 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐(0,𝑇𝑇) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇). 

6.4. A Note on Portfolio Management 

The results on the pricing of single-name credit-risky securities above apply regardless of the 

pricing model used to determine the CRDFs. However, the nonparametric model I introduce here offers 

clear advantages for portfolio management. The combination of a CTSCDS (obtained directly from the 

OTSCDS) and the term structure of risk-free interest rates provides a direct estimate of the term 
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structure of CRDFs. Moreover, as the prices of these securities are simple functions of the CRDFs, the 

model allows for a straight mapping between the observable market risk factors (OTSCDS and term 

structure of risk-free interest rates) and prices of the most common single-name credit-risky securities 

(spot and forward CDS contracts and risky bonds). The final implication is the possibility of translating 

the predicted distribution function for such market risk factors into a distribution function for the values 

of different credit-risky portfolios using Monte Carlo simulations.10 By extension, this also represents 

an easy path for integrating market and credit risk.  

7. Semiparametric vs. Nonparametric Estimation: Relative Pricing Errors 

7.1. Data and Comparison Criterion 

This section compares the pricing performance of the conventional PWCDP model with that of 

my proposed nonparametric model. In the latter case, I consider different interpolation schemes for the 

ex-ante estimation of the CTSCDS. The initial sample consists of the 107 companies included in the 

CDX (NA.IG and/or NA.HY) from 2010 to 2019. I collect USD-denominated CDS spreads with an 

MR/MR14 clause daily for all possible maturities: 6m, 1y, 2y, 3y, 4y, 5y, 7y, 10y, 15y, 20y, and 30y. 

In principle, this implies 2,569 observations of such CDS spreads for each company; in practice, the 

CDS spreads for all maturities are not always available. To avoid dealing with missing data, I restrict 

the analysis to company-dates with all quotes available. I also remove three companies because of 

convergence problems in the implementation of the PWCDP model on several dates. Thus, the final 

sample contains 248,218 company-date records of the OTSCDS without missing quotes or PWCDP 

model convergence problems, representing 90.3% of the initial 274,883 records. Table 2 presents the 

descriptive statistics of the CDS spreads. I compute the forward rates from the Treasury zero-coupon 

yield curve provided by the Federal Reserve Board at a daily frequency. 

<Table 2 about here> 

 
 

10 Clearly, this extension to portfolio management should incorporate the probability of a default state at the future 
pricing date and, thus, account for the connection between historical/current CDS levels and the probability of 
future default. 
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I evaluate the accuracy of the four pricing models—PWCDP, NP/Linear, NP/PCHIP, and 

NP/Spline—based on their relative pricing errors. Unlike the illustrative example in Section 1, the true 

CTSCDS is unknown. Because only a limited number of observed quotes are available, the comparison 

proceeds as follows. For each company-date observation, I estimate the four models using all but the 

6m-CDS spread. Next, I use the results to determine the 6m-CDS spread predicted by each model, with 

the pricing error gauged through a comparison with the actual quote. I repeat this process for other 

available maturities to obtain the final sample of pricing errors. 

Three important clarifications about this empirical study need to be made. First, while it compares 

a pricing model (PWCDP) and three direct interpolation schemes for the observed quotes (linear, 

PCHIP, and cubic spline), because the nonparametric model can reproduce any of these CTSCDS, the 

analysis represents, in effect, a comparison between the conventional PWCDP model and three versions 

of the nonparametric model. Second, although the overall results allow the ranking of the models 

according to their pricing accuracy, the values obtained can be expected to underestimate their real 

precision across the credit curve because some information that can be used to estimate them is always 

ignored. In addition, these hypothetical errors are typically estimated at or close to the midpoint of two 

observed maturities, where the results of the illustrative example in Figure 1 suggest that pricing errors 

tend to peak. Third, while I consider pricing errors for the 6m maturity (the first OTSCDS element) for 

comparison purposes, I exclude those for the 30y maturity (the final element). This is because, in 

practice, the lowest possible CDS contract maturity that might need to be priced is one day. Hence, 

whatever the lowest available maturity within the OTSCDS, some form of extrapolation is always 

required to complete the short end of the CTSCDS. By contrast, the maturity of an existing CDS contract 

will never be higher than that of the last available quote in the OTSCDS. Therefore, potential pricing 

errors beyond the longest available maturity do not need to be investigated, which may distort the 

conclusions. However, in some cases, the proposed extrapolation to the left of the curve may lead to 

negative values. I take several steps to prevent this problem in the estimation of the 6m-CDS spread. A 

positive value for the resulting one-day spread validates the estimated 6m-spread. Otherwise, I assume 
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that the CDS spread for a contract with zero maturity is zero, and this hypothetical quote is incorporated 

as part of the ordinary interpolation process. Notably, for the linear and PCHIP interpolation schemes, 

this rule guarantees a positive value for the estimated 6m-CDS spread because both satisfy the shape-

preserving property. However, negative values are still possible when using the cubic spline method. 

7.2. Results 

Table 3 provides the main descriptive statistics of the PAPEs. Among the four pricing approaches, 

the NP/PCHIP model has the lowest MPAPE, whereas the PWCDP model has the highest MPAPE. 

Notably, even the simplest, linear version of the nonparametric approach offers more accurate results 

on average than the conventional PWCDP model. 

<Table 3 about here> 

 Figure 7 presents an in-depth analysis of the pricing errors generated by each model. Figure 7A 

plots the MPAPE as a function of contract maturity. I find that the PWCDP model underperforms in all 

versions of the nonparametric approach for the shortest maturities. However, these differences tend to 

decline and even revert for the longest maturities. Specifically, the nonparametric models (including 

NP/Linear) outperform the PWCDP model in the interval (0,5y]. For the remaining terms, the 

NP/PCHIP and PWCDP models offer similar results, which, in turn, outperform the NP/Linear and 

NP/Spline models. The accuracy of any of the models in the range (0,5y] is particularly relevant. As 5y 

is by far the most traded maturity, most existing CDS contracts have a remaining maturity within that 

interval. As a complementary analysis, Figure 7B depicts the MPAPE by credit risk level proxied by 

the 5y-CDS spread. The results confirm that regardless of the credit risk level, the PWCDP model is 

the less accurate approach on average, while the NP/PCHIP model is the most accurate. 

Based on the empirical evidence on bid-ask spreads in Du et al. (2019), I conclude that the 

differences in the pricing errors are not economically significant. While such information is not 

available for my sample, they analyze a similar sample and report relative bid-ask spreads for the 1y, 

2y, 3y, 7y, and 10y maturities of 0.7235, 0.5285, 0.2652, 0.1321, and 0.1266, respectively (though do 

not report information for other maturities; see their Internet Appendix). As these values are already 
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higher than the (upward-biased) estimates of the MPAPE reported in Figure 7A for all the models, it 

can certainly be inferred that pricing error differences do exist but are economically insignificant. Thus, 

the main conclusions of this empirical analysis are as follows. Relative to the conventional PWCDP 

model, the nonparametric approach represents a much more flexible, simpler, and faster (as well as 

reliable) pricing method. However, these benefits do not come at the cost of lower precision. Indeed, 

the nonparametric approach, particularly the NP/PCHIP model, also has the advantage of an effective 

(although not economically significant) reduction in pricing errors. 

<Figure 7 about here> 

8. Conclusions 

This study introduces a simple nonparametric approach to pricing CDS contracts and other single-

name credit-risky securities. By this means, it contributes to the extant literature in which pricing models 

are either parametric or semiparametric. Similar to the traditional estimation of implied discount factors 

in risk-free bond prices, this method provides direct estimates of CRDFs from a prespecified CTSCDS. 

Its implementation is based exclusively on closed-form solutions, removing the need for root-search 

algorithms or other forms of optimization. Empirical evidence from a large sample of companies over 

2010–2019 confirms that the new method produces fewer pricing errors than a conventional PWCDP 

model, which can be seen as a restricted and computationally demanding version of the nonparametric 

approach presented here. However, the reduction in pricing errors is not economically significant and 

therefore is only an additional benefit of the proposed method. The main advantages of the 

nonparametric approach are its flexibility, simplicity, and estimation speed. 

The present study has some limitations, leaving the door open for future research. For example, 

while the proposed method is an effective alternative to semiparametric models for marking-to-market 

CDS positions, I do not provide a comparison with parametric models. However, I also do not present 

the nonparametric approach as a substitute for parametric models that have their own paths beyond 

pricing. Additionally, the new method accommodates any prespecified CTSCDS and I explore only the 

performance of certain common interpolation schemes. In reality, this method allows the user to 
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determine the most convenient technique for the ex-ante estimation of the CTSCDS. The election 

depends on the problem, and the optimal choice may not be among the non-exhaustive list of 

possibilities I consider here. If the intention is marking-to-market CDS contracts with up to 5y 

maturities, simple linear interpolation seems sufficiently accurate (or at least more accurate than the 

standard PWCDP model) and straightforward to implement. However, this implies a discontinuous term 

structure for the forward risk-neutral default probability. Spline interpolation generates a smooth term 

structure for such probabilities; however, it is less accurate. One interesting possibility I do not consider 

here is the estimation of the CTSCDS using a Nelson–Siegel or Svensson-like model. Compared with 

a straight interpolation between the observed CDS spreads, it has the disadvantage of involving a 

parametric model, an optimization process, and pricing errors in the observed CDS spreads. However, 

a parametric model of this type could be useful for certain applications and a sensible compromise 

between simplicity, smoothness, and accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



21 
 
 

 

Appendix 

This appendix demonstrates that Equations (12)–(15) satisfy both NAC1 and NAC2. Regarding 

NAC1: 

                          𝐴𝐴(𝑇𝑇) = ∆�{𝑍𝑍(ℎ∆)𝑆𝑆[(ℎ − 1)∆]}
𝑇𝑇/∆

ℎ=1

 

                                                   = ∆ � {𝑍𝑍(ℎ∆)𝑆𝑆[(ℎ − 1)∆]}
(𝑇𝑇−∆)/∆

ℎ=1

+ ∆𝑍𝑍(𝑇𝑇)𝑆𝑆(𝑇𝑇 − ∆) 

                                                   = 𝐴𝐴(𝑇𝑇 − ∆) + ∆𝐸𝐸(𝑇𝑇). 

Regarding NAC2: 

𝐶𝐶(𝑇𝑇) + 𝐵𝐵(𝑇𝑇) − 𝐵𝐵(𝑇𝑇 − ∆) = 𝑍𝑍(𝑇𝑇)𝑆𝑆(𝑇𝑇) + �{𝑍𝑍(ℎ∆)𝐻𝐻(ℎ∆)}
𝑇𝑇/∆

ℎ=1

− � {𝑍𝑍(ℎ∆)𝐻𝐻(ℎ∆)}
(𝑇𝑇−∆)/∆

ℎ=1

 

                                                               = 𝑍𝑍(𝑇𝑇)𝑆𝑆(𝑇𝑇) + 𝑍𝑍(𝑇𝑇)𝐻𝐻(𝑇𝑇) 

                                                               = 𝑍𝑍(𝑇𝑇)��[1 − 𝑞𝑞(𝑢𝑢∆)]
𝑇𝑇/∆

𝑢𝑢=0

+ 𝑞𝑞(𝑇𝑇) � [1 − 𝑞𝑞(𝑢𝑢∆)]
(𝑇𝑇−∆)/∆

𝑢𝑢=0

� 

                                                               = 𝑍𝑍(𝑇𝑇) � [1 − 𝑞𝑞(𝑢𝑢∆)]
(𝑇𝑇−∆)/∆

𝑢𝑢=0

 

                                                               = 𝑍𝑍(𝑇𝑇)𝑆𝑆(𝑇𝑇 − ∆) 

                                                               = 𝐸𝐸(𝑇𝑇). 
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Tables 

Table 1. Numerical example of bootstrapping the CRDFs. 

 
This table presents a subsample of the numerical example results, where the term structures of 𝐴𝐴(𝑇𝑇), 𝐵𝐵(𝑇𝑇), and 

𝐶𝐶(𝑇𝑇) are estimated based on the CTSCDS and Equation System (9). In this case, the CTSCDS is obtained through 

a linear interpolation of CDS spreads with observed maturities (Obs. Mat.). Observed spreads and initial CRDF 

values are indicated in bold. The example assumes a constant risk-free rate of 2% and recovery rate of 40%.  

Obs. Mat.

0 - 0.000000 0.000000 1.000000

1/365 4.25 0.002740 0.000002 0.999943

2/365 4.27 0.005479 0.000004 0.999887

… … … … …

182/365 9.16 0.495985 0.000757 0.989323

6m 183/365 9.19 0.498695 0.000764 0.989262

184/365 9.21 0.501405 0.000770 0.989202

… … … … …

364/365 14.10 0.986473 0.002318 0.977952

1y 1 14.13 0.989152 0.002329 0.977887

… … … … …

2y 2 28.51 1.954228 0.009284 0.951630

… … … … …

3y 3 44.85 2.890680 0.021609 0.920575

… … … … …

4y 4 60.54 3.794190 0.038286 0.885828

… … … … …

5y 5 74.44 4.661809 0.057834 0.848927

… … … … …

7y 7 95.82 6.285719 0.100387 0.773895

… … … … …

10y 10 114.70 8.451172 0.161557 0.669415

… … … … …

15y 15 127.46 11.438759 0.243001 0.528218

… … … … …

20y 20 131.79 13.803296 0.303180 0.420746

… … … … …

30y 30 134.81 17.203669 0.386542 0.269375

𝑇𝑇 𝑐𝑐𝑐𝑐𝑐𝑐 𝑇𝑇 𝐴𝐴 𝑇𝑇 𝐶𝐶 𝑇𝑇𝐵𝐵 𝑇𝑇
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Table 2. Main descriptive statistics: CDS spreads. 

 
This table presents the main descriptive statistics of the CDS spreads in the sample: the mean, median, minimum, 

maximum, and standard deviation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cds(0.5) cds(1) cds(2) cds(3) cds(4) cds(5) cds(7) cds(10) cds(15) cds(20) cds(30)
Mean 36.01 45.34 70.10 97.56 125.13 152.17 181.61 196.81 204.45 208.19 210.08
Median 10.80 14.19 25.79 40.24 56.66 74.80 100.78 117.49 126.53 132.04 135.48
Min 0.82 1.06 3.04 4.53 6.55 9.84 20.52 28.18 28.89 29.63 32.26
Max 19,942.33 17,395.30 14,307.61 12,710.33 11,810.71 11,341.91 10,772.98 10,277.27 9,777.48 9,510.61 9,297.33
SD 162.70 166.18 183.37 200.47 215.00 227.81 228.56 222.12 216.04 212.30 209.61
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Table 3. Main descriptive statistics: PAPEs by pricing model. 

 
This table presents the main descriptive statistics of the PAPEs by pricing model: PWCDP, NP/Linear, NP/PCHIP, 

and NP/Spline. The PAPE for each observed maturity is estimated by ignoring a specific quote in the estimation 

process, and the actual and predicted CDS spreads for that maturity are compared. The reported statistics 

correspond to the pricing errors for 6m, 1y, 2y, 3y, 4y, 5y, 7y, 10y, 15y, and 20y maturities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PWCDP NP/Linear NP/PCHIP NP/Spline
Mean 0.16 0.08 0.06 0.10
Median 0.07 0.04 0.03 0.03
Min 0.00 0.00 0.00 0.00
Max 18.71 17.05 17.45 30.82
SD 0.26 0.18 0.18 0.33
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Figures 

Figure 1. Example of estimation approaches for the complete term structure of CDS spreads. 

 

 

This figure provides an example of two possible estimation approaches for the CTSCDS (True, black solid line, 

left axis) based on the OTSCDS (red points, left axis): the PWCDP model (Figure 1A; blue dashed line, left axis) 

and PCHIP method (Figure 1B; blue dashed line, left axis). It is assumed that the actual CTSCDS corresponds to 

a particular parametrization of the Svensson model (𝛽𝛽0 = 140; 𝛽𝛽1 = −133; 𝛽𝛽2 = −325; 𝛽𝛽3 = 275; 𝛼𝛼1 =

2.2; 𝛼𝛼2 = 3.1). This figure also shows the PAPEs for each estimation method (black dotted line, right axis). 
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Figure 2. Payment structures of assets 𝐴𝐴, 𝐵𝐵, 𝐶𝐶, and 𝐸𝐸 with maturity 𝑇𝑇. 

 

This figure presents the payment structures of assets 𝐴𝐴, 𝐵𝐵, 𝐶𝐶, and 𝐸𝐸 with maturity 𝑇𝑇 > 0. The possible outcomes 

for each day are no default (𝑁𝑁𝑁𝑁) and default (𝑁𝑁). 
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Figure 3. Daily structure of the premium leg in a CDS contract with maturity 𝑇𝑇. 

 

This figure shows the daily structure of the premium leg in a CDS contract with maturity 𝑇𝑇 > 0. The possible 

outcomes for each day are no default (𝑁𝑁𝑁𝑁) and default (𝑁𝑁). 
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Figure 4. Daily structure of the protection leg in a CDS contract with maturity 𝑇𝑇. 

 

This figure shows the daily structure of the protection leg in a CDS contract with maturity 𝑇𝑇 > 0. The possible 

outcomes for each day are no default (𝑁𝑁𝑁𝑁) and default (𝑁𝑁). 
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Figure 5. Numerical example of bootstrapping the CRDFs.  

    

    

This figure plots the numerical example results, where the term structures of 𝐴𝐴(𝑇𝑇), 𝐵𝐵(𝑇𝑇), and 𝐶𝐶(𝑇𝑇) are estimated 

based on the CTSCDS and Equation System (9). Red points indicate that the CDS spread corresponds to an 

observed maturity. In this case, the CTSCDS was obtained via a linear interpolation of the observed quotes. The 

example assumes a constant risk-free rate of 2% and recovery rate of 40%. 
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Figure 6. Example of the term structures of forward risk-neutral default and survival 

probabilities by pricing model. 

    

    

This figure plots the term structures of 𝑞𝑞(𝑇𝑇) (black solid line, left axis) and 𝑆𝑆(𝑇𝑇) (blue dashed line, right axis) for 

the four pricing models: PWCDP (Figure 6A), NP/Linear (6B), NP/PCHIP (6C), and NP/Spline (6D). All cases 

were assumed to have the same OTSCDS. 
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Figure 7. MPAPE by maturity and 5y-CDS spread level. 

      

This figure plots the MPAPE by maturity (Figure 7A) and 5y-CDS spread level (Figure 7B). The pricing models 

considered were PWCDP (black solid line), NP/Linear (blue dotted line), NP/PCHIP (red dashed line), and 

NP/Spline (gray solid line). 
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